Matemática


Equipe: Ascânio Junior e Filipe Assis.
Situação ProblemaComo usar os poliedros no dia a dia.
Assunto: Poliedros.


Poliedro é um sólido geométrico cuja superfície é composta por um número finito de faces, cujos vértices são formados por três ou mais arestas em três ou mais dimensões (eixo dos "X", "Y", "Z",...) em que cada uma das faces é um polígono. Os seus elementos mais importantes são as faces, as arestas e os vértices.

Características

Trata-se de um objeto com muitas faces.
Um poliedro que tenha como faces apenas polígonos regulares, todos idênticos, e que também apresente todos os bicos (ângulos poliédricos) idênticos entre si é um poliedro regular.
Platão, por volta do século VI antes de Cristo, estudou certa classe de poliedros; que vieram posteriormente, ser conhecidos como os poliedros de Platão, entre os quais se incluem os poliedros regulares.
De um poliedro de Platão, exige-se que:
· Todas as faces sejam polígonos, regulares ou não, mas com o mesmos número de lados;
· Todos os bicos sejam formados com o mesmo número de arestas.
Quantos são os poliedros de Platão?
Só existem cinco tipos de poliedros de Platão, regulares ou não, que são: 1. Tetraedro 2. Octaedro 3. Icosaedro 4. Hexaedro 5. Dodecaedro
Obs: Na tentativa de construir poliedros regulares, verificamos, na prática, que não é possível fazê-lo nem com hexágonos, nem com polígonos que tenham mais do que seis lados.
Obs 2: Os poliedros podem ser convexos ou não-convexos.
· número de faces de um poliedro deve ser maior ou igual a 3.

Teorema de Euler

Em todo poliedro com A arestas, V vértices e F faces, vale a relação V – A + F = 2 Essa relação é verdadeira para todos os poliedros convexos.
Os poliedros regulares são conhecidos desde a antiguidade. O livro XIII dos "Elementos" de Euclides (cerca de 300 a.C.) é inteiramente dedicado aos sólidos regulares e contém extensos cálculos que determinam, para cada um, a razão entre o comprimento da aresta e o raio da esfera circunscrita.
Obs 3: A soma dos ângulos de todas as faces de um poliedro convexo é S = (V – 2).4r - Onde V é o número de vértices e r é um ângulo reto.
A soma das medidas dos ângulos das faces de um poliedro convexo é dada pela expressão S = (V – 2).360 - O poliedro apresenta somente faces planas.


Sólidos Platónicos

São apenas cinco os poliedros regulares convexos ("Platônicos"): Tetraedro, hexaedro(cubo), octaedro, dodecaedro e isocaedro.

Prismas

Os prismas e antiprismas são grupos infinitos.
Os Prismas são constituidos por duas faces paralelas chamadas diretrizes que dão o nome ao prisma, e uma série de retângulos, tantos como lados da face diretriz. Por exemplo, o prisma cujas faces diretrizes são triangulares chama-se prisma triangular e compõe-se de 2 triângulos e 3 retângulos; tem 9 arestas e 6 vértices de ordem 3 de onde convergem sempre dois retângulos e um triângulo. Outro exemplo seria o Prisma decagonal composto de 2 decágonos + 10 rectângulos; tem 30 arestas e 20 vértices de ordem 3.

Pirâmides

Pirâmide de n-lados é um poliedro formado pela ligação de todos os vértices de um lado poligonal de n lados com um único ponto, chamado vértice da pirâmide, através de n faces triangulares.



Nenhum comentário:

Postar um comentário